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Simplified replica treatment of various random-energy and random-field models
with confinement potential

Gerhard Diener*
Institut für Theoretische Physik, Technische Universita¨t Dresden, D-01062 Dresden, Germany

Lutz Brusch
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, D-01187 Dresden, Germany

~Received 26 April 1999!

A modified version of the replica method recently proposed by the authors@J. Phys. A32, 585 ~1999!# is
applied to a certain class of models describing the motion of a particle in a random potential with superposed
parabolic confinement. Different types of randomness are considered. Previous treatments of analogous models
were based on replica symmetry breaking~RSB!. The aim of the paper is to demonstrate that the new method
provides reliable results for the average free energy and related quantities without taking into account RSB.
The comparison with computer simulations shows satisfactory agreement.@S1063-651X~99!00810-7#

PACS number~s!: 05.20.2y, 64.60.Cn, 05.70.Np
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I. INTRODUCTION

In a previous paper@1# we presented a new version of th
replica method for the treatment of random systems. T
basic idea of this version is to determine the distribut
function of the free energyF directly from moments of the
partition function̂ Zn&. It was shown that this method is we
suited to circumvent the complicated problem of repl
symmetry breaking~RSB!. In the case of the random-energ
model ~REM! exact results could be derived from replic
symmetric approximations of the moments^Zn&. For the
Sherrington-Kirkpatrick~SK! model we found reasonabl
approximations without taking into account RSB. The aim
the present paper is to apply the modified method to a c
of models which we call ‘‘random-energy’’ and ‘‘random
field models with confinement’’ and which were investigat
previously by Mézard and Parisi@2#, Engel @3#, and
Bouchaud and Me´zard@4#. The models can be interpreted
terms of a particle moving one dimensionally in a poten
which is given as the superposition of a parabolic confi
ment potential and a random part. Different assumpti
about the statistics of the random potential lead to sev
variants of the problem.

Whereas the original REM was introduced by Derrida@5#
as a model for spin glasses, the extensions considered in
paper are rather motivated by the problem of manifolds,
terfaces, or fibers in random media@2,6,7#. The moving par-
ticle can be considered as the zero-dimensional limit o
manifold and the parabolic confinement potential stands
the surface or line energy of extended objects.

In the papers@2,3# Parisi’s scheme of RSB was used
estimate different quantities for these models. Bouchaud
Mézard@4# investigated various random energy models w
confinement by means of extreme value statistics and o
step RSB. We shall demonstrate that our method yields v
satisfactory estimates on the basis of rather simple rep
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symmetric approximations of the moments^Zn&.
In Sec. II the fundamental equations developed in@1# are

shortly summarized. In Sec. III the random-energy mo
with confinement and Gaussian distribution of the energie
considered. The extension to more general distribution fu
tions is discussed in Sec. IV and results previously obtai
in @4# are reproduced. Finally, Sec. V deals with a rando
field model which is analogous to models already inve
gated in@2,3# and previously in@7#.

II. BASIC EQUATIONS

The principal problem is to calculate the mean free ene
of a disordered system,^F&52T^ ln Z&, whereZ is the par-
tition function and the brackets denote the disorder avera
The starting quantities are the moments^Zn&5:expF(n)
which are assumed to be known in a sufficiently good
proximation. In the conventional replica trick the mean fr
energy is obtained from a continuation ofF(n) towards the
limit n50,

^ ln Z&5 lim
n→0

^Zn&21

n
5

dF

dn U
n50

. ~1!

However, in many interesting cases the functionF(n)
undergoes ‘‘phase transitions’’ in the interval 0,n,1. Then
a naive continuation from integer values ofn towardsn50
leads to erroneous results. The phase transitions are
nected with the phenomenon of RSB. Parisi@8,9# invented a
famous scheme to take into account RSB in the continua
of F(n).

Alternatively, we try to reconstruct the distribution func
tion of Y5 ln Z52bF (b51/T) from the moments ofZ. If
we denote this distribution function byw(Y)5exp@2R(Y)#,
then the relation between the functionsF(n) and R(Y) is
mainly given by a Legendre transformation with addition
finite-size corrections@1#
3573 © 1999 The American Physical Society
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dR

dY
5n→Y~n!5F82

1

2

Y9

Y8
'F82

1

2

F-
F9

,

~2!

R„Y~n!…5R~n!5nF82F1
1

2
ln 2pF92

n

2

F-
F9

,

where the primes denote derivatives with respect ton. In
reasonable modelsR andF are extensive quantities and th
last terms in Eqs.~2! as well as the logarithmic contributio
are indeed finite-size corrections. The normalization con
tion for the distribution functionw(Y) leads to a lower cutoff
at Y(n0) wheren0 is given by

R~n0!1 ln n050. ~3!

Due to the cutoff at finiten0 , the limit n→0 in the function
F(n) need not be performed and therefore RSB becom
less important. This is a main advantage of the propo
procedure in comparison with the usual one described by
~1!. The cutoff of the distribution functionw(Y) and the
RSB transition inF(n) even seem to correspond to ea
other to some extent.

Disregarding finite-size corrections, we may identify t
mean free energy with the cutoff value

2^F&5
1

b
^Y&'

1

b
Y~n0!5:

1

b
Y0 . ~4!

III. RANDOM-ENERGY MODEL WITH CONFINEMENT

In @1# the above-described procedure has been show
yield very good results for the REM. This model is defin
by a partition function@5#

Z5 (
k51

2N

e2bEk, ~5!

where theEk are independent random variables with Gau
ian distribution. Instead of Eq.~5! we shall now consider a
model with an infinite number of statesk. The number of
accessible states, however, is limited by an additional p
bolic confinement potential

Z5 (
k52`

`

e2b@Ek1~m/2! k2#. ~6!

The energiesEk are again independent random variab
with Gaussian distribution, vanishing mean value^Ek&50,
and variancêEk

2&51. The parameterm controls the effective
number of states really involved. Small values ofm corre-
spond to large systems. The model~6! is a discrete version o
the continuous models studied in@3,4#.

The calculation can be carried out along the same line
for the basic REM in@1#. At very low temperaturesb→`
the partition functionZ is dominated by a single ground sta
term with smallest energy. Then then-fold sum in
i-

s
d
q.

to

-

a-

s

as

^Zn&5K (
k1, . . . ,kn

expF2b~Ek1
1¯1Ekn

!

2
mb

2
~k1

21¯1kn
2!G L ~7!

reduces approximately to a simple sum overk15k25¯

5kn5k:

^Zn&'K (
k

e2nb@Ek1 ~m/2! k2#L 5e~nb!2/2(
k

e2 ~nbm/2! k2

'e~nb!2/2E
2`

`

dke2 ~nbm/2! k2
5A 2p

nbm
e~nb!2/2,

~8!

F~n!5
n2b2

2
2

1

2
ln

nbm

2p
.

The transition to the integral overk is only justified for suf-
ficiently smallnbm,1.

The simple replica trick~1! fails for expression~8! be-
cause of the divergence ofF(n) at n50. The transformation
to Y(n) andR(n) yields

Y~n!5nb22
1

2n
1

1

n~2n2b211!
,

~9!

R~n!5
1

2 Fn2b2211 ln nb3mS 11
1

2n2b2D G1
1

2n2b211
.

Equation~3! for the cutoff valuen05g/b takes the form

g21 ln g3m1
2

2g211
211 lnS 11

1

2g2D50. ~10!

According to Eq.~4!, the mean free energy is then given b

2^F&5
1

b
Y~n0!5g2

1

2g
1

1

g~2g211!
. ~11!

This result does not depend on the temperature. The sys
is frozen. Therefore the entropy vanishes,^S&50, and the
energy coincides with the free energy,^U&5^F&. In the
limit of a very broad confinement potentialm→0 the solu-
tion behaves as

g→Au ln mu,
~12!

2^F&52^U&'g→Au ln mu.

For high temperatures the situation becomes very sim
The replicas are nearly independent from each other and
approximation

^Zn&'^Z&n,
~13!

F~n!5nF~1!5
n

2 S b22 ln
bm

2p D
can be used. Then the original replica trick~1! can be applied
in a naive way. RSB does not occur. In this simple situat
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the present method leads to the same expessions as
procedures. In the approximation~13! the function

Y~n!5
1

2 S b22 ln
bm

2p D
becomes independent ofn which means that the distributio
function of Y reduces to ad-like function. Therefore the
mean value is simply

2^F&5
1

b
^Y&5

1

2 S b2
1

b
ln

bm

2p D . ~14!

Entropy and energy are given by

^S&5b2
]^F&
]b

5
1

2 S 12b22 ln
bm

2p D ,

~15!

^U&5^F&1b
]^F&
]b

5
1

2b
2b.

The transition between the low- and high-temperature beh
ior occurs in the vicinity ofbc5g or n051. Of course, due
to the effective finiteness of the system, the transition is
sharp. In Fig. 1 the analytical estimates~11! and ~14! are
compared to computer simulations form5(2p)1/431023

50.001 58 anduku<200, averaged over 600 samples. Sta
tical errors are smaller than the size of the dots. This is a
true for the following figures. The agreement forT→0 and
T@Tc is quite good. Deviations occur in the transition regi
T'Tc51/g where the high- and the low-temperature a
proximations forF(n) are not appropriate.

A further interesting quantity is the mean square displa
ment of the system in the confinement potential due to
random energies and thermal motion. It can be calcula
immediately from the free energy. For a given realization
the system one finds

FIG. 1. Mean free energy of the REM with confinement~6! for
m50.001 58. Solid line: analytical result for low temperatures~11!;
dashed line: high-temperature approximation~14!; dots: computer
simulations averaged over 600 samples.
ual
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^k2&5
1

Z (
k

k2e2b@Ek1 ~m/2! k2#52
2

b

]

]m
ln Z52

]F

]m
,

~16!

where the brackets denote the thermodynamic average
the canonical ensemble. A subsequent disorder average
to

^^k2&&52
]^F&
]m

. ~17!

Application of this formula to the low-temperature resu
~11! gives

^^k2&&52
dg

dm

d^F&
dg

5
1

gm

8g6112g426g221

8g6120g412g211

'
1

gm F12
1

g2 1OS 1

g4D G . ~18!

In the limit of smallm this expression tends to

^^k2&&→
1

mAu ln mu
for m→0. ~19!

The asymptotic behavior described by Eqs.~12! and ~19!
agrees with the estimates obtained previously in@3#.

For the high-temperature regime one obtains

^^k2&&5
1

bm
. ~20!

This corresponds to the Boltzmann distribution in the co
finement potential. The random energiesEk lose their influ-
ence at high temperatures. In Fig. 2 the analytical results
compared to the same numerical simulations as in Fig
Again, one observes excellent agreement in the low-
high-temperature limits.

FIG. 2. Mean square displacement of the REM with confin
ment~6! for m50.001 58. Solid line: analytical result for low tem
peratures~18!; dashed line: high-temperature approximation~20!;
dots: computer simulations averaged over 600 samples.
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IV. NON-GAUSSIAN DISTRIBUTIONS

In @4# Bouchaud and Me´zard studied the model~6! for
random energiesEk obeying a non-Gaussian statistics a
ymptotically described by a distribution function

P~E!;exp~2BuEud! for E→2`. ~21!

Moments^Zn& of the partition function do only exist ford
.1. In the following we shall extend the estimations pe
formed in the preceding section to this more general ca
The calculation of the momentŝZn& in analogy to Eq.~8!
leads to expressions of the type

^e2nbE&;E dxenbxe2Bxd

;@Bd~d21!g22D#2 1/2e(d21)BgD
, ~22!

where the integral is performed by the method of steep
descent. The parametersg andD are defined by

g5
nb

Bd
, D5

d

d21
~23!

and gD characterizes the energy which yields a maxim
contribution to the integral. The Gaussian case is recove
for

d52, B5
1

2
, g5nb, ^e2nbE&5en2b2/2. ~24!

Thus, the generalization of Eq.~8! is given by the replace
ment

n2b2

2
→~d21!BgD1

D22

2
ln g2

1

2
ln Bd~d21!,

~25!

F~n!5~d21!BgD1
D22

2
ln g2

1

2
ln

mnbBd~d21!

2p
1c,

wherec is a constant of order unity. Transformation~2! leads
to

Y~n!5bgD212
1

2n
1OS g2D

Bn D ,

~26!

R~n!5BgD1
1

2
ln g1

1

2
ln mb2Bd1O~1!.

The cutoff is determined by Eq.~3!, which now reads

g05
n0b

Bd
,

~27!

05Bg0
D1

1

2
ln m1

3

2
ln~g0Bd!1O~1!.

For the free energy we obtain

2^F&'
Y~n0!

b
5g0

D212
1

2g0Bd
1OS 1

g0
D11~Bd!2D .

~28!
-

-
e.

st

l
ed

This low-temperature approximation does not depend
the temperature and describes a frozen state. In the limit
large system with very broad confinement potentialm→0
the solution of Eq.~27! tends to

g0
D→Ec

d2
3

2B
ln bc , ~29!

where the abbreviations

1

2B
u ln mu5:Ec

d , BdEc
d215:bc ~30!

are used. Then we may write for the average energy

2^F&5Ec2
3

2bc
@ ln bc1O~1!#. ~31!

The expression agrees with the result for the ground s
energy given in Eq.~43! of @4# apart from the prefactor
(23) in the logarithmic term of Eq.~31! which seems to be
missing in@4# by error.

The high-temperature approximation is easily obtained

^Zn&'^Z&n, F~n!5nF~1!,

Y~n!5
dF

dn
5F~1!5^Y&,

~32!

2^F&5
^Y&
b

'
d21

d S b

Bd D 1/~d21!

2
1

2b
ln F mb2

2p S Bd

b D 1/~d21!G .
The transition between the frozen state and the hi

temperature regime occurs atb'bc with bc defined in Eq.
~30!. The spatial distribution of the occupied states in t
confinement potential is characterized by^^k2&& and can be
calculated according to Eq.~17!. For the low-temperature
case we find

^^k2&&52
dg0

dm

d^F&
dg0

5
1

mbc
F11

3

2

d21

bcEc
ln bc1OS 1

bcEc
D G .

~33!

The leading term coincides with the result given in Eq.~41!
of @4#. In the high-temperature limit we obtain

^^k2&&52
]^F&
]m

5
1

bm
~34!

in agreement with the previous result~20! for the Gaussian
case.

V. RANDOM-FIELD MODEL

In the preceding sections the energiesEk were considered
as independent random variables. Let us now move to co
lated energies. Instead of the energiesEk themselves the
changes of the energy between neighboring statesEk
2Ek215hk are chosen as independent random variab
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with Gaussian distribution. Thus instead of a ‘‘random p
tential’’ we consider ‘‘random fields’’ with the following
properties:

Ek5 (
k851

k

hk8 , ^hk&50, ^hkhk8&5dkk8 ,

~35!

^EkEk8&5k ~k8>k>0!.

A continuous model of this kind has been investiga
already in@2,3# within the RSB scheme. The estimation
the momentŝ Zn& is a little bit more involved than in Sec
III. For simplicity we restrict the partition function to pos
tive values ofk,

Z5
1

2
1 (

k51

`

e2b@Ek1 ~m/2! k2#5:( 8
k

e2b@Ek1 ~m/2! k2#,

~36!

^Zn&5 ( 8
k1 . . . kn

K e2b(
m51

n

EkmL expF2
bm

2 (
m51

n

km
2 G .

For arguments arranged according tok1<k2<¯<kn one
finds

( Ekm
5n(

k51

k1

hk1~n21! (
k5k111

k2

hk1¯1 (
k5kn2111

kn

hk ,

~37!

^e2b(Ekm&5expS b2

2
@n2k11~n21!2~k22k1!1¯

1~kn2kn21!# D .

For parameter valuesb,1, bm!1 the sums in Eq.~36! can
be approximately replaced by integrals

^Zn&'n! E
0

`

dk1E
k1

`

dk2¯E
kn21

`

dkn expF b2

2
n2k1

1
b2

2 (
m51

n21

~n2m!2~km112km!2
bm

2 (
m51

n

km
2 G .

~38!

The ordering of the arguments is compensated by the p
actor n!. For not too high temperaturesT51/b the main
contributions to the integrals in Eq.~38! result from the re-
gion k1'k2'¯'kn'k05bn/2m for which the integrand
takes maximal values. Now starting the integrations w
kn5kn211k and using the approximation

E
0

`

dke2gk2dk2
'

1

g
expF2

2d

g2G , ~39!

which is valid ford!g2, we find
-

d

f-

h

E
kn21

`

dkn exp
b

2 Fb~kn2kn21!2
bm

2
kn

2G
'

1

b~mkn212 b/2!
expF2

bm

2
kn21

2

2
m

b~mkn212 b/2!2G . ~40!

If we replace the variablekn21 in the slowly varying quan-
tities by k05bn/2m, expression~40! simplifies to

2

b2~n21!
expF2

bm

2
kn21

2 2
4m

b3~n21!2G . ~41!

Performing the following integrations in the same mann
we finally end up with the last integral overk15k:

^Zn&5n! S 2

b2D n21

)
m51

n21
1

m~n2m!
expS 2

4m

b3 A~n! D
3E

0

`

dke~b/2!@bn2k2mnk2#

~42!

'S 2

b2D n21 n

~n21!!
A 2p

mnb
expF ~nb!3

8m
2

4m

b3 A~n!G ,
A~n!5 (

m51

n21
1

m~n2m!2 5
1

n (
m51

n21 S 2

nm
1

1

m2D .

In order to continue this expression to noninteger valuen
!1, we use the representations

~n21!! 5G~n!→ 1

n
~n!1!,

1

m
5E

0

`

dxe2mx,
1

m2 5E
0

`

dxxe2mx,

~43!

A~n!52
1

n E0

`

dxF2

n
1xG e2nx2e2x

12e2x →2
3

n3 ~n!1!.

Thus, the approximation for the moments^Zn& in the region
n!1 finally reads

F~n!5 ln^Zn&5
~nb!3

8m
1

1

2
ln

2p

mnb
1~n21!ln

2

b2 1 ln n2

1
12m

~nb!3 . ~44!

Now the formalism given in Sec. II can be applied. Wi
the abbreviations

~nb!3

2m
5: n3, w~n!ª

n3

4
1

1

2
ln pn31

6

n3 ~45!

one obtains
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F5w~n!2n ln
b2

2
,

~46!

Y5
dF

dn
5

n

n S w82
1

2

w-
w9 D2 ln

b2

2
,

R1 ln n5nS w82
1

2

w-
w9 D2w~n!1

1

2
ln 2pn2w950.

The last equality represents the cutoff condition. It yieldsn
5n0b/(2m)1/351.540. Inserting this result in the foregoin
line of Eq. ~46! gives the mean free energy

2^F&5
Y0

b
5

C

m1/32
1

b
ln

b2

2
, ~47!

with the constant

C5
1

21/3S w82
1

2

w-
w9 D50.657. ~48!

The mean square displacement is determined by

^^k2&&52
]^F&
]m

5
2

3

C

m4/3. ~49!

At low temperaturesT51/b,1 the system is frozen in a
state of minimal energy whose average value isC/m1/3. For
finite temperatures there is a thermal excitation around
ground state described by the last term in Eq.~47!. This term
is independent ofm because small excitations do not feel t
slowly varying confinement potential. For the same rea
the excitations are nearly symmetric with respect to
ground state and do not change the average displace
~49!. The scaling of the ground state properties with the c
finement parameterm described by Eqs.~47! and~49! is the
same as obtained in@2,3# by scaling arguments and by a RS
treatment and as it was discussed previously by Villain@6#
and Villain et al. @7#.

At very low temperatures 1/b!1 the behavior of the free
energy ~47! cannot be completely correct since it leads
negative values of the entropy

S52
]^F&
]T

5
]

]T
T ln 2T2521 ln 2T2. ~50!

The reason is that the replacement of the sums by integra
the transition from Eq.~37! to Eq. ~38! breaks down in the
regionb.1 ~dotted curve in Fig. 3!.

The analytical estimates~47! and~49! are compared to the
results of computer simulations in Figs. 3 and 4, resp
tively. The confinement potential is chosen asm51023 and
k values up to 300 are taken into account. The results
averaged over 5000 samples. Again, statistical errors
smaller than the size of the dots in the figures. The ag
ment is very satisfactory in the low-temperature region. D
viations occur for higher temperatures. Above a characte
tic temperatureTc'n21(2m)21/3 ~given in a similar form in
@2,3#! a transition to a high-temperature regime takes pla
For T→Tc the cutoff parametern0 tends to unity. The ex-
amples discussed in@1# already showed that, in the thermo
is

n
e
ent
-

in

-

re
re
e-
-
s-

e.

dynamic limit, the phase transition to the high-temperat
phase occurs exactly atn051. In the present treatment th
breakdown of the approximations forn0→1 can clearly be
seen in Eq.~43!.

The high-temperature behavior forT.Tc is dominated by
the confinement potential. In the crudest approximation
random energies can be entirely omitted. Then no rep
treatment is needed. The partition function~36! and the free
energy reduce to

^Z&5Z5
1

2
1 (

k51

`

e2 ~bm/2! k2
'E

0

`

dke2 ~bm/2! k2
5A p

2bm
,

~51!

^F&5F52T ln Z52
T

2
ln

pT

2m

FIG. 3. Mean free energy of the random-field model form
50.001. Solid line: analytical result for low temperatures~47!;
dashed line: high-temperature approximation~51!; dots: computer
simulations averaged over 5000 samples. The dotted line indic
the failure of the approximation for very low temperatures.

FIG. 4. Mean square displacement of the random-field mo
for m50.001. Solid line: analytical result for low temperatur
~49!; dashed line: high-temperature approximation~52!; dots: com-
puter simulations averaged over 5000 samples.
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and the mean square displacement is

^^k2&&52
]F

]m
5

T

m
. ~52!

These approximations are also represented in Figs. 3
4 by dashed lines. They fit the simulations perfectly forT
*10.

Finally, in Fig. 5 the comparison between the simulati
results and the analytical estimates is made in a diffe
form. The quantity

f ~ t !5m1/3F2^F&1
1

b
ln

b2

2 G ~53!

is plotted as a function of the rescaled temperaturet
5m1/3T. According to Eq.~47! it should be equal to the
m-independent constantC for low temperatures. Therefore
simulation results for a different value ofm51022 are in-
cluded. For high temperatures Eq.~51! yields the asymptotic
behavior

FIG. 5. Energy parameterf (t) versus rescaled temperaturet.
Solid line: analytical result for low temperatures~48!; dashed line:
high-temperature approximation~54!; dots: computer simulations
for m50.001 averaged over 5000 samples; triangles: comp
simulations form50.01 averaged over 6000 samples.
nd

nt

f ~ t !5
t

2
ln

p

~2t !3 ~ t@tc!. ~54!

The transition occurs in the vicinity oftc5m1/3Tc'0.52.
Again, the agreement is satisfactory.

VI. CONCLUSION

We have shown that the models considered in this pa
can be treated by means of the simplified replica meth
developed in@1#. The remaining differences between com
puter simulations and analytical estimates for intermed
temperatures are undoubtedly due to the rough approxi
tions used for the momentsF(n) and not to the method
itself.

The simulations are performed for rather small syste
which are far from the ‘‘thermodynamic limit’’m→0,
^^k2&&→`. Therefore, the finite-size corrections contain
in Eqs. ~2! and ~3! considerably influence the analytical e
timates. Equations~2!–~4! rest on saddle-point expansions
various integrals over the distribution functionw(Y) which
become correct in the thermodynamic limit. The conditio
of validity for these expansions are given in@1#. A check of
these conditions for the above examples shows that the
pansion parameters, although smaller than unity, are not
small. Thus, inclusion of higher order terms could sligh
change the estimates.

We think that the simple cutoff procedure used abo
corresponds to a one-step RSB@3,4,9#. The cutoff parameter
n0 can be shown to coincide with the step position in t
overlap spectrumq(x) of the RSB treatment. Certainly th
simplified method, at least in its present form, is not able
reveal more complicated features of the overlap spectraq(x)
of glassy systems. However, a possible advantage of
present method could be that it does not necessarily dem
Gaussian mean field approximations in the calculation of
momentŝ Zn& as is the case in Parisi’s RSB scheme.

Finally, it seems to us that the success of the pres
treatment in the limiting case of zero-dimensional mod
justifies the hope that more involved models for high
dimensional manifolds could be dealt with in a similar wa
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