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Simplified replica treatment of various random-energy and random-field models
with confinement potential
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A modified version of the replica method recently proposed by the aufdoihys. A32, 585 (1999] is
applied to a certain class of models describing the motion of a particle in a random potential with superposed
parabolic confinement. Different types of randomness are considered. Previous treatments of analogous models
were based on replica symmetry breaki{lR$B). The aim of the paper is to demonstrate that the new method
provides reliable results for the average free energy and related quantities without taking into account RSB.
The comparison with computer simulations shows satisfactory agreef8af63-651X%99)00810-1

PACS numbd(s): 05.20-y, 64.60.Cn, 05.70.Np

[. INTRODUCTION symmetric approximations of the momer&").
In Sec. Il the fundamental equations developefilihare
In a previous papdrl] we presented a new version of the shortly summarized. In Sec. Ill the random-energy model
replica method for the treatment of random systems. Thavith confinement and Gaussian distribution of the energies is
basic idea of this version is to determine the distributionconsidered. The extension to more general distribution func-
function of the free energ? direct|y from moments of the .t|0ns IS dISCUSSGd n SeC v and reSUItS preV|9US|y 0bta|ned
partition function(Z". It was shown that this method is well in [4] are reproduced. Finally, Sec. V deals with a random-
suited to circumvent the complicated problem of replicafild model which is analogous to models already investi-
symmetry breakingRSB). In the case of the random-energy 9at€d in[2,3] and previously ir{7].
model (REM) exact results could be derived from replica
symmetric approximations of the moment&"). For the
Sherrington-Kirkpatrick(SK) model we found reasonable
approximations without taking into account RSB. The aim of  The principal problem is to calculate the mean free energy
the present paper is to apply the modified method to a classf a disordered systeniF)= —T(In Z), whereZ is the par-
of models which we call “random-energy” and “random- tition function and the brackets denote the disorder average.
field models with confinement” and which were investigatedThe starting quantities are the momer&")=:expd(n)
previously by Meard and Parisi[2], Engel [3], and which are assumed to be known in a sufficiently good ap-
Bouchaud and Meard[4]. The models can be interpreted in proximation. In the conventional replica trick the mean free
terms of a particle moving one dimensionally in a potential€nergy is obtained from a continuation®{n) towards the
which is given as the superposition of a parabolic confinelimit n=0,
ment potential and a random part. Different assumptions
about the statistics of the random potential lead to several n
. o {Z"N=-1 do
variants of the problem. (InZ)=lim~—-—=— ] (1
Whereas the original REM was introduced by Deriifia neo N anif _,
as a model for spin glasses, the extensions considered in this
paper are rather motivated by the problem of manifolds, in-
terfaces, or fibers in random media,6,7]. The moving par- However, in many interesting cases the functidiin)
ticle can be considered as the zero-dimensional limit of aindergoes “phase transitions” in the intervak@<1. Then
manifold and the parabolic confinement potential stands foa naive continuation from integer valuesmftowardsn=0
the surface or line energy of extended objects. leads to erroneous results. The phase transitions are con-
In the paperg2,3] Parisi's scheme of RSB was used to nected with the phenomenon of RSB. Paf&B] invented a
estimate different quantities for these models. Bouchaud anfhmous scheme to take into account RSB in the continuation
Mézard[4] investigated various random energy models withof ®(n).
confinement by means of extreme value statistics and one- Alternatively, we try to reconstruct the distribution func-
step RSB. We shall demonstrate that our method yields vergion of Y=InZ=—p8F (8=1/T) from the moments oZ. If
satisfactory estimates on the basis of rather simple replicave denote this distribution function by(Y)=exg —R(Y)],
then the relation between the functio®gn) and R(Y) is
mainly given by a Legendre transformation with additional
*Electronic address: diener@theory.phy.tu-dresden.de finite-size correction§l]

II. BASIC EQUATIONS
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reduces approximately to a simple sum owgr=ky,="---
where the primes denote derivatives with respechidn =k,=k:
reasonable modeR and® are extensive quantities and the
last terms |n_E_qs(2_) as well as the logarithmic gon@nbuhon _ <Z”>%< E o NBLECH (uf2) k2]> =e(”ﬁ>2’22 o (NBui2) K2
are indeed finite-size corrections. The normalization condi- m m
tion for the distribution functionv(Y) leads to a lower cutoff

at Y(no) whereng is given by %e(”ﬁ)z’zfoc dke- (Bul) P /ﬁemmz’z,
— nBu
R(ng) +Inng=0. (3 (8)
22 1 _npu
Due to the cutoff at finiteng, the limit n—0 in the function o(n)= 2 Elnﬁ

®(n) need not be performed and therefore RSB becomes - _ _ S
less important. This is a main advantage of the proposedhe transition to the integral ovéris only justified for suf-
procedure in comparison with the usual one described by Ediciently smallngu<1.

(1). The cutoff of the distribution functiomv(Y) and the The simple replica trick1) fails for expression(8) be-
RSB transition ind(n) even seem to correspond to eachcause of the divergence &f(n) atn=0. The transformation
other to some extent. to Y(n) andR(n) yields

Disregarding finite-size corrections, we may identify the

mean free energy with the cutoff value 1

Y(M=nB* = oot N D)

(Fy= 2 (¥)~ =¥ (ng)=: =¥ (@) 1 PR | PO ;
_ - — ~ — no =. 0 22 3 (
B B B R(n) 2| N B-1tInngu|1 2n°p? 2n?B2+1°
IIl. RANDOM-ENERGY MODEL WITH CONFINEMENT Equation(3) for the cutoff valueno = y/3 takes the for

In [1] the above-described procedure has been shown to 21+ 2 14]
yield very good results for the REM. This model is defined yriny'ut 2y%+1 —1+in
by a partition functior{ 5]

1

According to Eq.(4), the mean free energy is then given by
2N

_ 1 1 1
Z:kgle P (5) _<F>=EY(nO)=7_2_'y+

ey

where theE, are independent random variables with Gauss—?rhIS result does not depend on the temperature. The system

ian distribution. Instead of Eq5) we shall now consider a ' frozen. Th(_edrefore_trethentfropy vamshész:é), alndt:]he
model with an infinite number of statds The number of ~SNEr9Y coincides wi e free energyt))=(F). In the

accessible states, however, is limited by an additional para{':m't of a very broad confinement potentigl—0 the solu-

bolic confinement potential ion behaves as

. y—=lInwl,
BB+ 2 12
Z:k;x e BlEH(u/2) k7] (6) —(F)= — (U}~ y— —||n,u|. (12

. o . For high temperatures the situation becomes very simple.
The energiesE, are again independent random variablesThe replicas are nearly independent from each other and the
with Gaussian distribution, vanishing mean vali)=0,  approximation

and variancé E2)= 1. The paramete controls the effective

number of states really involved. Small values ofcorre- (ZM~(Z)",
spond to large systems. The mo@@lis a discrete version of (13
the continuous models studied [i8,4]. ni, Bu

The calculation can be carried out along the same lines as P(n)=n®(1)= 2 B Inﬁ

for the basic REM in1]. At very low temperature@®— oo
the partition functior? is dominated by a single ground state can be used. Then the original replica tridk can be applied
term with smallest energy. Then timefold sum in in a naive way. RSB does not occur. In this simple situation
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FIG. 1. Mean free energy of the REM with confinemé®it for
u=0.00158. Solid line: analytical result for low temperatu(e®);
dashed line: high-temperature approximatiad); dots: computer
simulations averaged over 600 samples.

FIG. 2. Mean square displacement of the REM with confine-
ment(6) for =0.00158. Solid line: analytical result for low tem-
perature(18); dashed line: high-temperature approximati@o);
dots: computer simulations averaged over 600 samples.

the present method leads to the same expessions as usual<k2>_ Z K2e~ BlEi+ (u2) K] = _ E—Inz 2_':
procedures. In the approximatigh3) the function Ip
(16)

where the brackets denote the thermodynamic average over
the canonical ensemble. A subsequent disorder average leads

1 Bu
Y(n)=§(,8 Inﬁ)

becomes independent nfwhich means that the distribution 0
function of Y reduces to as-like function. Therefore the < >

mean value is simply ((k¥))y=2—"=" (17)

1 1 Bu L .

—(F)=—(Y)==| B~ —In— (14) Apphcatlon of this formula to the low-temperature result

B 2 B (11) gives
Entropy and energy are given by (k=237 dy d<F> 1 89%+12y*—6y%—

HFY 1 8 du dy  yu 8y6+20y4+2yz+1

y7s
(S)=B>— 3B 2(1—ﬂ2—ln2—), 1 1
15 ~— 1—7+O pedit (18
a(F > 1 - . _
(U)= <F)+ﬁ —B—ﬁ. In the limit of small x this expression tends to

The transition between the low- and high-temperature behav- ((k?))— ; for w—0. (19
ior occurs in the vicinity of8.=y or ny=1. Of course, due p|In

to the effective finiteness of the system, the transition is not
sharp. In Fig. 1 the analytical estimatékl) and (14) are ~ The asymptotic behavior described by E¢$2) and (19)
compared to computer simulations fer=(27)Yx 1073 agrees with the estimates obtained previouslj3ih
=0.001 58 andk| <200, averaged over 600 samples. Statis- For the high-temperature regime one obtains
tical errors are smaller than the size of the dots. This is also
true for the following figures. The agreement fb0 and
T>T, is quite good. Deviations occur in the transition region
T~T.=1/y where the high- and the low-temperature ap-
proximations ford(n) are not appropriate. This corresponds to the Boltzmann distribution in the con-
A further interesting quantity is the mean square displacefinement potential. The random energigslose their influ-
ment of the system in the confinement potential due to thence at high temperatures. In Fig. 2 the analytical results are
random energies and thermal motion. It can be calculatedompared to the same numerical simulations as in Fig. 1.
immediately from the free energy. For a given realization ofAgain, one observes excellent agreement in the low- and
the system one finds high-temperature limits.

(k2= —. 20
Bu
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IV. NON-GAUSSIAN DISTRIBUTIONS
In [4] Bouchaud and Meard studied the modéB) for

random energie€, obeying a non-Gaussian statistics as-

ymptotically described by a distribution function
P(E)~exp —B|E|?) for E— —. (21)

Moments(Z") of the partition function do only exist foé

GERHARD DIENER AND LUTZ BRUSCH
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This low-temperature approximation does not depend on
the temperature and describes a frozen state. In the limit of a
large system with very broad confinement potengiak0
the solution of Eq(27) tends to

3
70 —Ec—5gIn e (29

>1. In the following we shall extend the estimations per-Where the abbreviations
formed in the preceding section to this more general case.

The calculation of the moment&Z") in analogy to Eq(8)
leads to expressions of the type

(e‘”ﬁE>~J dxeBreBX

~[B§( S5— 1) 727D]7 1/26(571)ByD' (22)

1 _
ﬁ||nM|::E;§, BSES '=:8, (30)

are used. Then we may write for the average energy
3

_<F>:EC_ 2,3(:

[InBc+O(1)]. (31)

where the integral is performed by the method of steepest The expression agrees with the result for the ground state

descent. The parameteysandD are defined by

n o
YZB_'?S' D=—— (23

and yP characterizes the energy which yields a maximal

energy given in Eq(43) of [4] apart from the prefactor
(—3) in the logarithmic term of Eq.31) which seems to be
missing in[4] by error.

The high-temperature approximation is easily obtained by

(Z=(2)", @(n)=nd(1),

contribution to the integral. The Gaussian case is recovered

for

1
8=2, B==, y=np, (e "FEy=en’F2

: (24

Thus, the generalization of E€B) is given by the replace-

ment
n2p2 , D-2 1
T_>(5—1)By + 5 Iny—EInBé(ﬁ—l),
(25
b, D—2 1 wunpB&(6—1)
d(n)=(6—1)By"+ 5 Iny—EnT c,

wherec is a constant of order unity. Transformati(®) leads
to

’}’7 D

Bn )’

D 1 1 2
R()=By°+ 51N y+ 51 up?Bs+0(1).

1
—+0

Y(n)=pyP" - o

(26)

The cutoff is determined by E¢3), which now reads

_NoB
Yo7 Bs
(27)
b 1 3
0=Byy+ Eln Mt Eln(yoBé)—FO(l)
For the free energy we obtain
Y(No) 5, 1 ( 1 )
—(F)~ = - +0 .
< > :8 Yo 2’}/085 ’y(?+1(55)2
(28)

do
Y=g =0(L)=(Y),

<Y> 5—1 ﬁ 1/(6-1) (32)
‘<F>:7*T(§s)
1

Mﬂz BS 1(6—-1)
“2p" ﬁ(?) -

The transition between the frozen state and the high-
temperature regime occurs At 8. with B. defined in Eq.
(30). The spatial distribution of the occupied states in the
confinement potential is characterized {{k?)) and can be
calculated according to Eq17). For the low-temperature
case we find

s—1
BCEC

d’}/od<F>_ 1
du dyo  mBc

BCEC) :| .
(33

The leading term coincides with the result given in E&l)
of [4]. In the high-temperature limit we obtain

) 3
{(k*))y=2 1+§ InB.+0

XF) 1
u  Bu

in agreement with the previous res(®0) for the Gaussian
case.

((k?*))=2 (34)

V. RANDOM-FIELD MODEL

In the preceding sections the energigswere considered
as independent random variables. Let us now move to corre-
lated energies. Instead of the energi®s themselves the
changes of the energy between neighboring stdgs
—Ex_1=n are chosen as independent random variables
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with Gaussian distribution. Thus instead of a “random po- o Bu
tential” we consider “random fields” with the following f dk, exp5| B(kn—kn-1)— —-ky
properties: kn-1

~ Bluk,_1— BI2) 2 n-1
Ex= 2 7 (m)=0, ()=, Alukn-a= B

k'=1 n }
39 " Blukn - B2

If we replace the variabl&,_; in the slowly varying quan-
A continuous model of this kind has been investigatedities by ko= 8n/2u, expressior(40) simplifies to
already in[2,3] within the RSB scheme. The estimation of
the momentgZ") is a little bit more involved than in Sec. 2 Bu , 4u
[ll. For simplicity we restrict the partition function to posi- mex kn 1 B3(n—1)2
tive values ofk,

(40)
<EkEk/>:k (k’?k?O)

(41)

Performing the following integrations in the same manner

* we finally end up with the last integral ovkg=k:
7= %Jr > e AlEH (w2 kz]::Z’ e BlE+ (w2 K] y P g ‘
k=1

=1 mM(n—m)

2 \n-17t g 4
n n (30 (z"= n'(Bz) nl_[—exp(—ﬁ—'l;A(n))
@, 3, (eoZe)ed 23 5

1+ kn X J " Ak ALK uni?)
0
For arguments arranged accordingkp<k,<---<k, one N , (42)
finds (2" n eX (A" _ 4k ).
B?l  (n—1)! 8u B’
1 2 Kn
2 E=n> pet(n=1) X bt X g, nt 1!t
k=1 k=kq+1 k=kn_1+1 A(n)= E 2
(37) = m(n— m)2 n<y nm e
2
<e—ﬁ25km>=exp(£[n2kl+(n—1)2(k2—k1)+~-- In order to continue this expression to noninteger values
2 <1, we use the representations
+(kn—Kkn-1)1]. 1
(kn=kn 1)]) (n=1)!=I(n)—— (n<1),
For parameter valug8<1, Bu<1 the sums in Eq36) can 1 o 1 .
be approximately replaced by integrals _:J dxe ™, —= [ dxxe ™
m 0 m 0
* * “ Bz nx X (43)
(Z“>~n!f dklf dkz---f dk, exg —-n?k; __EJ"” 2 |e-e” 3 3
0 ke Kn_1 2 A(n)= oy dx X e X T (n<l).
LBS ) Br < . . _
? 2 N—m)“(Km1—Kmyn) — > 2 Kml- Thus, the approximation for the momer#") in the region
= m=1 n<1 finally reads
(38)
(nB)?® 1 2=« 2
_ _ =In(z")= +=In +(n—1)In— +Inn?
The ordering of the arguments is compensated by the pref 8u 2 ung B
actor nl. For not too high temperatureb=1/8 the main 12
contributions to the integrals in E¢38) result from the re- KM (44)

+—0.
gion ky~k,=~---~k,~ko= Bn/2u for which the integrand (nB)*
takes maximal values. Now starting the integrations with
k,=k,_1+ « and using the approximation

» 1 26
f dre™ 7oK~ —ex;{ -z
0 Y Y

Now the formalism given in Sec. Il can be applied. With
the abbreviations

3 3 1 6
, (39 (';i) =18, ¢(V)=:%+§|n m%; (45

which is valid for <2, we find one obtains
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2 100
qD:go(v)—nln%,

(46) —<F> /|

Y_dq)_v , 1(Pm BZ
“@n ¢ 2

Rtinn=r| o'~ > & +2In2mPe’=0
nn=v| ¢ 2o o(v) 2n Troe’=0.
The last equality represents the cutoff condition. It yields

=neB/(21)*=1.540. Inserting this result in the foregoing
line of Eq. (46) gives the mean free energy

Yy C 1 p?
—<F>—E—F§—E|n?, (47)

] 0.1 1 T, T 10
with the constant
1 10" FIG. 3. Mean free energy of the random-field model for
¢ =0.001. Solid line: analytical result for low temperaturgs);
C= '— - —;1=0.657. 48 ’
2_1'3( 4 2 ”) (48 dashed line: high-temperature approximati®i); dots: computer
simulations averaged over 5000 samples. The dotted line indicates

The mean square displacement is determined by the failure of the approximation for very low temperatures.
(K))=2 a(F) _ E C (49) dynamic limit, the phase transition to the high-temperature
du 3 F’g' phase occurs exactly ap=1. In the present treatment the

_ ) breakdown of the approximations fop—1 can clearly be
At low temperature§ =1/3<1 the system is frozen in a seen in Eq(43).
state of minimal energy whose average valu€ig.'®. For  The high-temperature behavior f6t> T is dominated by
finite temperatures there is a thermal excitation around thighe confinement potential. In the crudest approximation the
ground state described by the last term in &q). This term  random energies can be entirely omitted. Then no replica

is independent of. because small excitations do not feel the reatment is needed. The partition functi@®6) and the free
slowly varying confinement potential. For the same reasornergy reduce to

the excitations are nearly symmetric with respect to the
ground state and do not change the average displacement 1 = ) o 5 -
(49). The scaling of the ground state properties with the con<(Z)=Z= 5 + > e (Bul2k %f dke™ (B2 K = 80
finement parameter described by Eqg47) and(49) is the k=1 0 Bu
same as obtained [2,3] by scaling arguments and by a RSB (51)
treatment and as it was discussed previously by Vil[&h (F)=F=-TInz=— Ian_T
and Villain et al. [7]. 2 2u

At very low temperatures B/<1 the behavior of the free
energy (47) cannot be completely correct since it leads to
negative values of the entropy <<k’>>

/
=Ll = =2+ 10000
S T T TIn2T=2+In2T~. (50 ;

T
~
!

T
-~
!

The reason is that the replacement of the sums by integrals il 8000 /

the transition from Eq(37) to Eq. (38) breaks down in the * ,’
region 3>1 (dotted curve in Fig. B 6000 /
The analytical estimatgg7) and(49) are compared to the . /
results of computer simulations in Figs. 3 and 4, respec- . /
tively. The confinement potential is chosenzas 10”2 and ) /
k values up to 300 are taken into account. The results are 4000
averaged over 5000 samples. Again, statistical errors art /
smaller than the size of the dots in the figures. The agree: /
ment is very satisfactory in the low-temperature region. De- o ] L
viations occur for higher temperatures. Above a characteris-

tic temperaturdl =~ v~ *(2) ~** (given in a similar form in FIG. 4. Mean square displacement of the random-field model
[2,3]) a transition to a high-temperature regime takes placéfor ,=0.001. Solid line: analytical result for low temperatures
For T—T, the cutoff parameten, tends to unity. The ex- (49); dashed line: high-temperature approximati6); dots: com-
amples discussed ii] already showed that, in the thermo- puter simulations averaged over 5000 samples.

T
-~
!

T
-~
!

Te T 10
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t
. f(t)= E'”%ﬁ (t>t,). (54)

05 . . " ) L _ BT
The transition occurs in the vicinity of.=u*"T.~0.52.

\ Again, the agreement is satisfactory.

e VI. CONCLUSION

We have shown that the models considered in this paper
can be treated by means of the simplified replica method
developed in1]. The remaining differences between com-

\ puter simulations and analytical estimates for intermediate

‘\ temperatures are undoubtedly due to the rough approxima-
- - | L4 tions used for the moment$(n) and not to the method

0.01 0.1 te 1 4 itself.

The simulations are performed for rather small systems

FIG. 5. Energy parametef(t) versus rescaled temperatre  iop are far from the “thermodynamic limit” u— 0,
Solid line: analytical result for low temperaturéd); dashed line: K2 Theref he fini . . ined
high-temperature approximatio(®4); dots: computer simulations << )= erefore, the finte-size corrections containe

for 4=0.001 averaged over 5000 samples; triangles: computell EQSs-(2) and(3) considerably influence the analytical es-

simulations foru=0.01 averaged over 6000 samples. timates. Equationé2)—(4) rest on saddle-point expansions in
various integrals over the distribution functiev(Y) which
and the mean square displacement is become correct in the thermodynamic limit. The conditions
of validity for these expansions are given[i]. A check of
<<k2))=2f= I (52) these_ conditions for the above examples shoyvs that the ex-
u pansion parameters, although smaller than unity, are not very

small. Thus, inclusion of higher order terms could slightly

These approximations are also represented in Figs. 3 al ange the estimates.

4 by dashed lines. They fit the simulations perfectly Tor We think that the simple cutoff procedure used above

=10.
Finally, in Fig. 5 the comparison between the simulationﬁor::zsnp%gdzggv\?no& © cS;?an:Sngata] t;gesf:mﬁops?[riinm?;etrhe
results and the analytical estimates is made in a different® PP .
form. The quantity o_verlgp spectrung(x) of thg RSB treatment. Cgrtamly the
simplified method, at least in its present form, is not able to
reveal more complicated features of the overlap spefitca
(53 of glassy systems. However, a possible advantage of the
present method could be that it does not necessarily demand
is plotted as a function of the rescaled temperature Gaussian mean field approximations in the calculation of the
= uT. According to Eq.(47) it should be equal to the moments(Z") as is the case in Parisi's RSB scheme.
pu-independent constar@@ for low temperatures. Therefore, Finally, it seems to us that the success of the present
simulation results for a different value @f=102 are in-  treatment in the limiting case of zero-dimensional models
cluded. For high temperatures H{1) yields the asymptotic justifies the hope that more involved models for higher-

BZ

1
f(t)=p'¥ —(F)+ Em?

behavior dimensional manifolds could be dealt with in a similar way.
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